
OOP MIT Fall 2012

Resource Person: Abdul Mateen Page 1 of 4

A person who never made a mistake never tried anything new. Albert Einstein

Lecture 06

Type of Codes, Errors, More Library Functions and Programs

In this lesson we will discuss type of codes and errors followed by introduction of some more
functions and finally programs to do practice.

Type of Codes

Here we are categorizing Java code with respect to writing and execution of programs. There are
two types of codes:

- Source Code: A program written by humans (normally) and visible in the form that is human
readable is typically called a source code. Some editor is used to write source code like
Notepad, Wordpad, Textpad, Eclipse, NetBeans etc. Interestingly source code has a form which
can’t be run on any computer. A source code can be read, modified, extended or deleted but to
execute a Java program, source code must be compiled. Java compiler is included in JDK (Java
Development Kit is a bundle of softwares required for Java development.

- Byte Code: Java byte code is generated by Java compiler. Java compiler itself is a program that
takes source code as input and generates byte code as output if there is no syntax errors exist
in code. Java compilers are plat-form dependent whereas Java programs are plat-form
independent seems interesting. Java has a slogan "Write once run everywhere". Once a
program is compiled source code is not required to run the program. Rather you may take byte
code anywhere and execute. JRE (Java Runtime Environment) is required to run Java byte/ Java
program.

Note: JDK normally includes JRE.

Type of Errors

Again we are discussing one typical category of errors, errors may be categorized with some other
consideration:

- Syntax / Compile Time Error: Every programming language has its own syntax (Grammar of
language) that is rules to write programs. Though to experienced programmers programming
languages seems not very different but it is fact that there is variety of syntax exist. There are
many similarities in syntax of C++ (a language used in academia since long) and Java, yet there
are some differences. Like you may write int x=3.5 in C++ but not allowed in Java, similarly C++
allows if (a=5) whereas Java does not allow. Java compiler check syntax before generating
bytecode, if there is any syntax error bytecode is not generated and compiler tries to identify
the error at its best (though many times it fails to identify exact error but once again with
experience developers can identify syntax error also sophisticated editors like Eclipse, NetBeans
identify syntax errors while writing codes. Some common syntax errors are:

 Java is case sensitive therefore using small letter instead of capital letter or vice versa. This
errors is for both Java key words and variables

 Java is strict type therefore assigning incompatible type to variables like int t=3.56
 missing semicolon at the end of the statement
 writing = instead of ==, typically inside if condition or loop conditions
 missing operator or operand in expression

http://www.brainyquote.com/quotes/quotes/a/alberteins148788.html
http://www.brainyquote.com/quotes/quotes/a/alberteins148788.html

OOP MIT Fall 2012

Resource Person: Abdul Mateen Page 2 of 4

 missing any type of brackets (Large, Middle, Small)
 using variable without declaration
 writing variable on right hand side of expression without initialization
 using a class/ function not in lang package/ folder without import

Exception / Run Time Error: Some people consider Run Time Error as Logical Error, which is to me
different. If during the execution of program some error occurred and exception is generated which
if not handled can crash the program, means your program may terminate immediately. Exception
handling is a complete topic in high level languages and appropriate handling is not a scope of this
course, though we may do it at some stage. Some examples of run time errors are:

 a typical example is divide by zero, typically done using variables and during run time
variable may have 0 value

 function is called to take integer input but real values are entered or characters (other than
digits) are entered

 array (a variable having list of values) is accessed beyond the limit. For example if array size
is 5 and code is written to access 6th value. This is by programmers mistake to give wrong
value to index of array

 a file is to be opened for reading whereas file does not exist or have different name or rights
are not given to read file

Logical Error: Logical errors cause unexpected or wrong output. Though these are normally done by
mistake of developers but depending upon the nature of programs sometimes it is really hard to
find them. A process called debugging is used to find logical error. There are numerous possibilities
for logical errors, some examples are:

 assigning wrong value to variables. Very common is missing digit or character, disposition
writing 56 instead of 65.

 value exceeds variable range
 variable is not re initialized. Like if sum is used to calculate one set of values and same sum

variable is used for another set of values, it must be initialized to 0 before second
summation

 similarly loop variables are not initialized in second loop
 or there may be altogether wrong logic is used. For example to sort elements only few

numbers are sorted.

Summarizing among these syntax errors are easiest because same syntax is used again and again
and also compiler is your friend to find them. At second number are Run Time Errors. They are
easier to detect but problem with them is there may arise a situation after long when a typical run
time occur. For example network connection breaks down. The most difficult are logical errors,
unfortunately no tool available to find them but luckily there are development softwares like
Eclipse and NetBeans which helps a lot in debugging. Step by step execution, watching variables
step by step are some of the salient features of debuggers.

Functions and Programming Practice

As we already introduced functions in previous lectures, here we will discuss how we can use
related functions to do a task. For example a String may have many words like "This is OOP class".
Now if we want to separate these words, we may use substring function but substring function
requires start and end arguments; whereas; for first word I know start is 0 but what is end, if I say it
is 4, it means code will work for only strings having first word of length 4. Therefore, to generalize
the code I need to find position of space using indexOf function which gives position first
occurrence of any character inside string. See following code:

OOP MIT Fall 2012

Resource Person: Abdul Mateen Page 3 of 4

String s = "Where are you";
System.out.println("Position of space is:" + s.indexOf (' '));

The answer will be 5 in this case; whereas if we write same line with previous string the answer will
be 4. Therefore, we may write a code to split all words in previous string using indexOf function and
substring where indexOf name has two functions one has single argument; whereas; second has
two arguments, one is character to find and second is starting position. Now see the code:

String s = "This is OOP class";
int start = 0, end = s.indexOf (' ');
System.out.println(s.substring(start,end));
start = end, end = s.indexOf (' ', start + 1);
System.out.println(s.substring(start,end));
start = end, end = s.indexOf (' ', start + 1);
System.out.println(s.substring(start,end));
start = end, end = s.indexOf (' ', start + 1);
System.out.println(s.substring(start,end));

You may have question program is again hard coded, yes I agree though it can work for all strings
having 4 words, however, we can handle any string using loops. Within few weeks we will be there.
Function can also be used as arguments of other functions. For example in above code we have
written substring function inside print function. Like to compare two strings without case that is
spelling must be same ignoring upper or lower case, we may convert both strings in upper or lower
case like:

String s1 = "kamal ahmad";
String s2 = "kamal Ahmad";
s1.equals(s2);// false because letter case mismatch
s1.toUpperCase().equals(s2.toUpperCase());//true

Programming Practice

Next we will do some practice by using random functions from Math class. This function has no
argument and value is unpredictable like following code has output:

class RandomFuntions{

 public static void main(String []args){

 System.out.println(Math.random());

 System.out.println(Math.random());

 System.out.println(Math.random());

 }

}

0.6674039080118588

0.3163673793562789

0.5818845067234999

If you run again you may get some other output between 0 and 1. Somehow this random number
function is very useful to do test run with different values. It saves you from giving input from
keyboard that is ofcourse tidy job. However an obvious problem is the value returned by random
function. Here we will address this problem that how with little arithmetic we can obtain value
within required range.

OOP MIT Fall 2012

Resource Person: Abdul Mateen Page 4 of 4

First of all multiplying a random number with n will change the range from 0 to 1 to 0 to n.
Moreover addition with k can change range to k to n+k. It doesn’t matter whether k is positive or
negative. Lastly using type casting we can convert values to integer whereas originally it is double.
Now see

System.out.println(Math.random()*50);//32.38250752365021

System.out.println(Math.random()*50);//24.035292753202675

System.out.println(Math.random()*50);//35.4232354648898

Here we have multiplied with 50 therefore you can expect any value between 0 and 50. Therefore,
you can get any number between 0 and n by multiplying with n. However, in following code you can
see multiplication factor is 100 and additive factor is 50, hence output is between 50 and 150. Like
there is one value 53 close to 50 and another value is 141 close to 150. Though it not necessary to
find values always like this. There may be all values less than 100 or above 100 or anything else.

System.out.println(Math.random()*100+50);//53.870502035235255

System.out.println(Math.random()*100+50);////84.32247390443526

System.out.println(Math.random()*100+50);//141.0377212554997

Lastly these values are double whereas we may need integer values in many cases, therefore, type
casting is required for example see the code:

System.out.println((int)(Math.random()*100+50));//128

System.out.println((int)(Math.random()*100+50));//134

System.out.println((int)(Math.random()*100+50));//114

A last thing very important is type casting should be done carefully otherwise you may get incorrect
values like:

System.out.println((int) Math.random()*100);//0

In above code result will be 0 because expression is solved left to right, hence (int) will operate on
Math.random() and give 0 because value is between 0 and 1 hence fractional part will be chopped
and remaining is 0, however to handle this we will use parenthesis and multiply before casting, by
this casting operation will be performed after value goes above 1 and hence we may get integer
portion in result. Lastly see following program where we have replaced key board input by random
function.

class DistanceConvertor{

 public static void main(String []args){

 int km=(int)(Math.random()*100+500);

 double miles=km/8.0*5;

 System.out.println(km+" kms equivalent to "+miles+" miles");

 }

}

Sample runs of above code are:

128 kms equivalent to 80.0 miles

105 kms equivalent to 65.625 miles

119 kms equivalent to 74.375 miles

